Lake Napowan

Summary Report 2013
University of Wisconsin–Stevens Point
and
Waushara County Staff and Citizens
To protect the lake we must protect the “watershed,” the land that drains or sheds its water into the lake.
Lake Napowan - Location

Southeast of Wild Rose
South of County Road A
Township of Mt. Morris

Surface Area: 52 acres
Maximum Depth: 18 feet

Water Flow

- Lake Napowan is a seepage lake; most water enters via groundwater. Surface water runoff and direct precipitation also contribute water to lesser extents.
- Most water exits Lake Napowan via groundwater.
Land uses and land management practices occurring in a watershed can affect the water quality in a lake.

Land uses and land management also play major roles in how water moves across the landscape and how much water soaks into the ground (for long-term storage) or quickly runs off the land.

The surface watershed of Lake Napowan is 1,239 acres.

Forests and developed lands are the primary land uses in the watershed.

Lake Napowan has a mix of forested and developed lands bordering it. Generally, the land closest to the lake will have the greatest immediate impact on its water quality.
Lake Napowan – Groundwater Flow

Groundwater provides water to lakes in Waushara County throughout the entire year. Hard surfaces on the landscape prevent water from soaking into the ground and becoming groundwater. This results in less water flowing to the lake during the winter and between rains. Groundwater pumping can also reduce the amount of water entering lakes.

The quality of groundwater reflects what is happening on the land surface. Precipitation falling on forested land produces clean groundwater, whereas precipitation falling on lands that have chemical use can leach contaminants to groundwater. Groundwater contamination in central Wisconsin may include nitrogen, pesticides, herbicides and other soluble chemicals originating from septic systems, crops, barnyards, road maintenance, etc. Once in the groundwater, these chemicals slowly move towards a lake or river.

On the map below, arrows indicate the direction of groundwater flow to and from the lakes. Most of the groundwater enters Lake Napowan from the west.
Shoreland vegetation is critical to a healthy lake’s ecosystem. It provides habitat for many aquatic and terrestrial animals including birds, frogs, turtles, and many small and large mammals. It also helps to improve the quality of the runoff that is flowing across the landscape towards the lake. Healthy shoreland vegetation includes a mix of tall grasses/flowers, shrubs and trees.

Some stretches of the shoreland around Lake Napowan have healthy shoreland vegetation (displayed in green); however, many stretches could benefit the lake by being restored.
Aquatic plants are the forest landscape within a lake. They provide food and habitat for terrestrial and aquatic creatures such as fish, ducks, turtles, invertebrates and other animals. They increase oxygen levels in the water and utilize nutrients that would otherwise be used by algae. A healthy lake typically has a variety of aquatic plant species creating diversity that can help to prevent the establishment of aquatic invasive species.

- The aquatic plant community in Lake Napowan is characterized by above-average diversity of plant species when compared to other lakes in the Waushara County Lakes Study. The 2013 aquatic plant survey documented a total of 25 species.
- The presence of three species with high C-values indicates a high-quality water body.
During the 2013 aquatic plant survey of Lake Napowan, 96 percent of the sites sampled had vegetative growth. The maximum depth of rooted vegetation was 19.7 feet.

The two most frequently encountered plant species were coontail and southern naiad.

The 2013 aquatic plant survey of Lake Napowan found Eurasian watermilfoil (EWM) in low to moderate abundance. EWM can create dense beds which can stall or damage boat motors, make areas non-navigable, and prevent activities like swimming and fishing.

Species Richness is a count of the number of plant species found at a survey point. A greater number of species in a lake helps to make the aquatic plant community more resilient to year-to-year changes and aquatic invasive species. More plant species means more diverse habitat and food sources are available.

Coontail (above) is a free-floating plant with stiff, forked leaves resembling a raccoon’s tail. **Wild celery** (below), also known as eelgrass, has long, thin, ribbon-like leaves that are commonly up to four feet long. Its distinctive, corkscrew-shaped seedheads form in late summer. Both plants provide excellent habitat and cover for many fish species, and their seeds and leaves provide food for waterfowl.
Lakes go through a natural aging process that results in increased aquatic plant growth, fish, and wildlife over time. Within a lake’s watershed, human activity on the land, in a wetland, or in the lake can dramatically accelerate this process. Depending on land management practices, changes in a lake that may have normally taken centuries to occur may take place in decades or even years. The amounts of nutrients, algal growth, and water clarity measurements help to define the age of a lake. Based on these measures, lakes can be classified for comparison to one another.

Oligotrophic Lakes

Common uses:
- Swimming
- Skiing
- Boating

Vegetation of oligotrophic lakes:
- Very little vegetation

Mesotrophic Lakes

Common uses:
- Boating
- Fishing

Vegetation of mesotrophic lakes:
- Increased vegetation
- Occasional algal blooms

Eutrophic Lakes

Common uses:
- Fishing
- Wildlife watching

Vegetation of eutrophic lakes:
- Lots of aquatic plants
- Frequent algal blooms

Winter fish kills can occur in shallow lakes due to low oxygen levels.
Lake Napowan – Water Quality

Phosphorus is a major nutrient that can lead to excessive algae and rooted aquatic plant growth in lakes. In fact, one pound of phosphorus entering a lake can result in 500 pounds of algal growth. All Waushara County lakes have either sufficient or excessive nutrients for aquatic plant growth, so these lakes will benefit from limiting the addition of more nutrients. Sources of phosphorus include septic systems, animal waste, storm water runoff, soil erosion, and fertilizers for lawns, gardens and agriculture.

![Graph showing concentration of total phosphorus levels measured during spring and fall.](image)

- Total phosphorus levels measured when the lake was well-mixed during spring and fall are displayed in the graph to the left.
- During fall and spring 2010-2012, the average total phosphorus level was similar to historic measurements and indicated that Lake Napowan is a mesotrophic lake.

Water clarity is a measure of how deep light can penetrate (secchi depth). Clarity is affected by water color, turbidity (suspended sediment), and algae. Water clarity helps determine where rooted aquatic plants can grow.

![Graph showing water clarity measurements taken between April and November.](image)

- The graph to the left shows water clarity measurements taken between April and November. It is typical for water clarity to vary throughout the year.
- During the summers of 2011 and 2012, the poorest average water clarity in Lake Napowan was 12.3 feet in June and the best was 13.3 feet in July.
Lake Users:
- Run boat engines efficiently
- Observe no/low wake zones
- Refuel away from water
- Dispose of trash properly
- Remove all aquatic plants from boats and trailers
- Respect wildlife and other lake users

Land Owners:
- Control soil erosion
- Keep livestock out of lakes and streams
- Control manure runoff
- Carefully manage nutrients and pesticides
- Leave natural shoreland vegetation in place or restore if it has been removed
- Learn to identify and look for invasive species

Home Owners:
- Leave natural shoreland vegetation in place or restore if it has been removed
- Leave woody habitat for young fish, turtles, and frogs
- Eliminate the use of fertilizer or use no phosphorus fertilizer
- Eliminate or minimize use of pesticides
- Control soil erosion
- Control runoff from rooftops and hard surfaces
- Clean up after pets
- Learn to identify and look for invasive species

Stop the Spread of Aquatic Invasive Species!

Wetlands and Shorelands:
- LEARN how to identify invasive plants and animals, and know who to contact if found.
- DO NOT PURCHASE prohibited and restricted species! Whenever possible purchase native plants.
- NEVER transplant water garden plants or aquarium plants into lakes, streams, wetlands, or storm water ponds. Properly dispose of unwanted plants and animals!
- REMOVE invasive exotic plants from your landscape and replace them with native plants or non-invasive exotic plants. Scout annually for new invasive plants.
- AVOID using garden plants from other regions whose invasive potential is poorly understood.

Lakes and Rivers:
- LEARN what Wisconsin invasive plants and animals look like and who to contact if seen in a lake or river.
- INSPECT your boat, trailer, and equipment when traveling to different water bodies and REMOVE any attached aquatic plants or animals (before launching, after loading, and before transporting on a public highway).
- DRAIN all water from boats, motors, and all equipment after use at a lake.
- NEVER release live fish, bait, or pets into a wetland or water body.
- BUY minnows from a Wisconsin bait dealer. Only use leftover minnows at that same water body.
Lake Napowan – Primary Authors

Authors listed are from the UW-Stevens Point unless otherwise noted.

Aquatic Plants
Golden Sands Resource Conservation & Development Council, Inc.

Sediment Core
Samantha Kaplan
Paul Garrison (Wisconsin Department of Natural Resources)

Shoreland Assessments
Ed Hernandez and Waushara County Land Conservation Department Staff
Dan McFarlane

Water Quality and Watersheds
Nancy Turyk, Paul McGinley, Danielle Rupp and Ryan Haney
Ed Hernandez and Waushara County Land Conservation Department Staff

UW-Stevens Point Students: Melis Arik, Nicki Feiten, Sarah Hull, Chase Kasmerchak, Justin Nachtigal, Matt Pamperin, Scott Pero, Megan Radske, Anthony Recht, Cory Stoughtenger, Hayley Templar, Garret Thiltgen

Acknowledgments

We are grateful to many people for supporting this project by providing insight, enthusiasm, and funding. We would like to recognize our project partners:

Waushara County Watershed Lakes Council
Waushara County Staff and Citizens
Wisconsin Department of Natural Resources Professionals, Mark Sessing and Ted Johnson
Wisconsin Department of Natural Resources Lake Protection Grant Program
Dr. Samantha Kaplan and Dr. Paul McGinley

UW-Stevens Point Water and Environmental Analysis Lab